创大钢铁,免费钢铁商务平台

购物车(0)

创大钢铁首页

现货行情

综合指数

创大多端推广
您的当前位置: 首页 > 钢百科 > 钢材知识 > 基础知识

BL1085双级低压线性稳压器(LDO)

发布时间:2018-06-19 19:36 作者:互联网 来源:
58
BL1085双级低压线性稳压器(LDO)主要特点输出电压最高18V最大输出电流3A低功耗:4mA输出电压精度+-2%封装形式:TO252,TO263BL1085双级低压线性稳压器(LDO)造价信息市场价信息价询价 BL1085双级低压线性稳压器(LDO)概述B

BL1085双级低压线性稳压器(LDO)主要特点

输出电压最高18V

最大输出电流3A

低功耗:4mA

输出电压精度+-2%

封装形式:TO252,TO263

BL1085双级低压线性稳压器(LDO)造价信息

市场价 信息价 询价

BL1085双级低压线性稳压器(LDO)概述

BL1085采用TO-252,TO-263封装。

BL1085可以替换LM1085,G1085,广泛应用于DVD,机顶盒,LED液晶显示器,CRT显示器,空气净化器,直流变频空调电磁炉微波炉,电脑主板等领域。一般为3.3V输出。

BL1085双级低压线性稳压器(LDO)常见问题

线性稳压器的原理是什么?

稳压器的一般原理 稳压器,顾名思义,就是使输出电压稳定的设备。所有的稳压器,都利用了相同的技术实现输出电压的稳定输出电压通过连接到误差放大器(Error   Amplifier)...

线性电源稳压器diy的方法有哪些?

线性电源稳压器diy的方法:可以使用开关电源或者线性电源,后面再加上稳压电路或者7806等稳压集成电路,可以在网上搜到,具体的指标可以自己测量,直到满足要求为止。

稳压器不稳压

以前稳压的时候有声音是电机在转动,现在没声音了,主要有两种情况,1.线路板烧坏了;2.电机烧坏了。线路板烧坏不好判断,电机烧坏是可以判断的,把电源断掉,打开稳压器的面罩,可以看到里面有一个很大的线圈(...

稳压器的原理是什么 怎么制作稳压器

稳压器是由调压电路、控制电路、及伺服电机等组成,当输入电压或负载变化时,控制电路进行取样、比较、放大,然后驱动伺服电机转动,使调压器刷的位置改变,通过自动调整线圈匝数比,从而保持输出电压的稳定。容量...

谷稳压器与茂盛稳压器哪个好

目前,高速发展的中国稳压器行业处于一个"战国时代",所以 "价格 "和 "质量 "也是个模糊的东西。我们要买的都是为了保护和更好使用用电设备所以要慎重。有钱的话就买如;ABB、AREVA、保变、西变、...

LDO低压差线性稳压器LDO稳压器

​LDO是一种微功耗的低压差线性稳压器,它通常具有极低的自有噪声和较高的电源抑制比PSRR(PowerSupplyRejectionRatio)。

LDO是新一代的集成电路稳压器,它与三端稳压器最大的不同点在于,LDO是一个自耗很低的微型片上系统(SoC)。它可用于电流主通道控制,芯片上集成了具有极低线上导通电阻的MOSFET,肖特基二极管、取样电阻和分压电阻等硬件电路,并具有过流保护、过温保护、精密基准源、差分放大器、延迟器等功能。PG是新一代LDO,具各输出状态自检、延迟安全供电功能,也可称之为PowerGood,即“电源好或电源稳定”。

LDO低压差线性稳压器的结构主要包括启动电路、恒流源偏置单元、使能电路、调整元件、基准源、误差放大器、反馈电阻网络和保护电路等。基本工作原理是这样的:系统加电,如果使能脚处于高电平时,电路开始启动,恒流源电路给整个电路提供偏置,基准源电压快速建立,输出随着输入不断上升,当输出即将达到规定值时,由反馈网络得到的输出反馈电压也接近于基准电压值,此时误差放大器将输出反馈电压和基准电压之间的误差小信号进行放大,再经调整管放大到输出,从而形成负反馈,保证了输出电压稳定在规定值上,同理如果输入电压变化或输出电流变化,这个闭环回路将使输出电压保持不变,即:Vout=(R1+R2)/R2×Vref

实际的低压差线性稳压器还具有如负载短路保护、过压关断、过热关断、反接保护等其它的功能。

低压差线性稳压器设计原理与应用目录

前言

第一章低压差线性稳压器概述

第一节低压差线性稳压器的术语

第二节线性稳压器的原理及内部保护电路

一、线性稳压器的原理

二、线性稳压器的内部保护电路

第三节线性稳压器典型产品的原理及典型应用

一、三端固定式稳压器的原理及典型应用

二、三端可调式稳压器的原理及典型应用

第四节低压差线性稳压器的原理

一、PNP型低压差线性稳压器(LDO)的原理

二、准低压差线性稳压器(QLDO)的原理

三、超低压差线性稳压器(VLDO)的原理

第五节低压差线性稳压器的主要特点及产品分类

一、低压差线性稳压器的主要特点

二、低压差线性稳压器的产品分类

三、低压差线性稳压器与其他稳压器的性能比较

第六节低压差线性稳压器的应用领域及典型用法

一、低压差线性稳压器的应用领域

二、低压差线性稳压器的几种典型用法

第七节低压差线性稳压器的选择方法及使用注意事项

一、低压差线性稳压器的选择方法

二、低压差线性稳压器的使用注意事项

第八节低压差线性稳压器典型产品的主要技术指标

第二章低压差线性稳压器设计软件使用方法及设计实例

第一节低压差线性稳压器设计软件的分类

第二节LDO-It设计软件的工具栏及使用方法

一、LDO-It设计软件的工具栏

二、LDO-It设计软件的使用方法

第三节LDO-It设计软件的应用实例

第四节利用WEBENCH软件在线选择低压差线性稳压器的方法

第三章低压差线性稳压器的原理与应用

第一节LM1117型准低压差线性稳压器

一、LN1117型准低压差线性稳压器的原理

二、LM1117型准低压差线性稳压器的应用

第二节SPX1117型准低压差线性稳压器

一、SPX1117型准低压差线性稳压器的原理

二、SPX1117型准低压差线性稳压器的应用

第三节LP2950/2951型低压差线性稳压器

一、LP2950/2951型低压差线性稳压器的原理

二、LP2951型低压差线性稳压器的应用

第四节LM2990/2991型负压输出式低压差线性稳压器

一、LM2990/2991型低压差线性稳压器的原理

二、LM2990型低压差线性稳压器的应用

三、LM2991型低压差线性稳压器的应用

第五节MIC68200型具有排序与跟踪功能的低压差线性稳压器

一、MIC68200型低压差线性稳压器的原理

二、MIC68200型低压差线性稳压器的应用

第六节其他低压差线性稳压器的典型应用及使用技巧

一、LM2937型低压差线性稳压器的典型应用

二、MIC2941A型低压差线性稳压器的典型应用及使用技巧

三、NCV8675型低压差线性稳压器的典型应用

四、NCP1086型低压差线性稳压器的使用技巧

第四章超低压差线性稳压器的原理与应用

第一节TC10XX/20XX系列高精度超低压差线性稳压器

一、TC10XX/20XX系列超低压差线性稳压器的性能特点

二、TC10XX/20XX系列超低压差线性稳压器的原理与应用

三、使用注意事项

第二节MCP17XX/18XX系列高精度超低压差线性稳压器

一、MCP17XX/18XX系列超低压差线性稳压器的性能特点

二、MCP1700/1702超低压差线性稳压器的原理与应用

三、MCP1725/1726/1727/1827/1827S超低压差线性稳压器的原理与应用

第三节SP62XX系列超低压差线性稳压器

一、SP62XX系列超低压差线性稳压器的性能特点

二、SP6200/6201型超低压差线性稳压器的原理与应用

三、SP6203/6205型超低压差线性稳压器的原理与应用

第四节TPS73XX系列具有延时复位功能的超低压差线性稳压器

一、TPS73XX系列超低压差线性稳压器的性能特点

二、TPS73XX系列超低压差线性稳压器的原理

三、TPS73XX系列超低压差线性稳压器的典型应用

第五节MAX483X系列具有软启动功能的超低压差线性稳压器

一、MAX483XX系列超低压差线性稳压器的原理

二、MAX483XX系列超低压差线性稳压器的典型应用

第六节HT71XX/72XX系列高输入电压的超低压差线性稳压器

一、HT71XX/72XX系列超低压差线性稳压器的原理

二、HT71XX系列超低压差线性稳压器的应用技巧

第七节其他超低压差线性稳压器的原理与应用

一、MAX1735型超低压差线性稳压器的原理与应用

二、MAX5005型超低压差线性稳压器的原理与应用

三、LP38851型超低压差线性稳压器的应用

第五章多路输出式超低压差线性稳压器的原理与应用

第一节双路输出式超低压差线性稳压器

一、TC1301/1302系列双路输出式VLDO的原理

二、TC1301/1302系列双路输出式VLDO的典型应用

第二节三路输出式超低压差线性稳压器

一、MIC2215型三路输出式VLDO的原理

二、MIC2215型三路输出式VLDO的典型应用

第三节一次性可编程四路输出式超低压差线性稳压器

一、AS1352型可编程四路输出式VLDO的原理

二、AS1352型可编程四路输出式VLDO的典型应用

第四节带串行接口的可编程五路输出式超低压差线性稳压器

一、MAX1798/1799型带串行接口的五路输出式VLDO的原理

二、MAX1798/1799在CDMA数字移动电话中的应用

三、MAX1799的评估板及专用工具软件

第五节其他多路输出式低压差、超低压差线性稳压器的原理与应用

一、LM2935型双路输出式LDO的原理与应用

二、CAT6221型双路输出式VLDO的原理与应用

三、LP2966型双路输出式VLDO的原理与应用

四、R5320X系列三路输出式VLDO的原理与应用

第六章大电流输出式低压差线性稳压器的原理与应用

第一节1.5A低压差、超低压差线性稳压器

一、MSK5101型1.5A大电流LDO的原理与应用

二、LTC3026型升压变换式1.5A大电流VLDO的原理与应用

第二节3A低压差、超低压差线性稳压器

一、LP38501-ADJ/38503-ADJ型3A大电流VLDO的原理与应用

二、SPX1582型3A大电流LDO的原理与应用

第三节适用于USB系统的3A低压差线性稳压器

一、MIC29311型3A大电流LDO的原理

二、MIC29311型3A大电流LDO的典型应用

第四节5A低压差线性稳压器

一、LMS1585A型5A大电流LD0的典型应用

二、DF1084型5A大电流LDO的典型应用

三、SPX1585型5A大电流LDO的典型应用

第五节7.5A/8A低压差线性稳压器

一、MIC2971X/2975X系列7.5A大电流LDO的原理与应用

二、SPX1584型8A大电流LDO的典型应用

第七章特种低压差线性稳压器的原理与应用

第一节高压输入式低压差线性稳压器

一、MAX8718/8719型28v高压输入式LDO的原理与应用

二、LT3012/3014型80V高压输入式LDO的原理与应用

第二节具有峰值电流输出能力的低压差线性稳压器

一、MIC5216型具有峰值输出能力的LD0的原理与应用

二、峰值电流输出的应用实例

第三节单路输出式低压差和超低压差线性稳压控制器

一、LT1123型低压差线性稳压控制器的原理与应用

二、MIC5156型超低压差线性稳压控制器的原理与应用

第四节多路输出式超低压差线性稳压控制器

一、MAX8563/8564型超低压差线性稳压控制器的原理

二、MAX8563/8564型超低压差线性稳压控制器的典型应用

第五节带DC/DC变换器的复合式低压差和超低压差线性稳压器

一、LTC3448型复合式低压差线性稳压器的原理与应用

二、TC1304型复合式超低压差线性稳压器的原理与应用

第六节带超低压差线性稳压器的可编程离子电池充电器

一、带vIDO的可编程锂离子电池充电器的原理

二、带VLDO的可编程锂离子电池充电器的典型应用

第七节LM2984/2984C型基于LDO的微处理器电源系统

一、LM2984/2984C型微处理器电源系统的原理

二、LM2984/2984C型微处理器电源系统的典型应用

第八章低压差线性稳压器的电路设计

第一节低压差线性稳压器的设计要点

一、低压差线性稳压器的基本类型

二、低压差线性稳压器电路设计要点

三、低压差线性稳压器的布局

四、低压差线性稳压器及散热器的装配技术

第二节低压差线性稳压器关键外围元器件的选择

一、输入电容器、输出电容器及旁路电容器的选择

二、外部取样电阻及电流检测电阻的选择

三、外部功率MOSFET的选择

四、低压差线性稳压器封装形式的选择

第三节低压差线性稳压器常见故障分析

一、低压差线性稳压器常见故障一览表

二、低压差线性稳压器常见故障分析

第四节提高低压差线性稳压器输出电压精度的方法

一、影响LDO输出电压精度的主要因素

二、提高LDO输出电压精度的方法

第五节减小浪涌电流及改善瞬态响应的方法

一、减小LDO浪涌电流的方法

二、改善LDO瞬态响应的方法

三、LDO瞬态响应的测试方法

第六节可编程低压差线性稳压器的电路设计

一、数字电位器的原理

二、可编程低压差线性稳压器的电路设计

第九章低压差线性稳压器的使用技巧

第一节提高低压差线性稳压器输入电压的方法

第二节利用外部双极型晶体管扩展LDO负载电流的方法

一、MAX8863型超低压差线性稳压器的原理与应用

二、利用晶体管扩展MAX8863负载电流的方法

第三节利用外部场效应晶体管扩展LDO负载电流的方法

一、MIC5158型低压差线性稳压控制器的基本应用

二、利用场效应晶体管扩展MIC5158负载电流的方法

第四节低压差线性稳压器的并联使用方法

第五节能从零伏起调的低压差线性稳压器应用电路

一、可调式低压差线性稳压器的典型应用电路

二、能实现低压差线性稳压器从零伏起调的两种方法

第六节由低压差线性稳压器构成恒流源的方法

一、由低压差线性稳压器构成的简易恒流源

二、由超低压差线性稳压控制器构成的恒流源

第十章低压差线性稳压器的应用实例

第一节低压差线性稳压器在计算机电源中的应用

一、对计算机电源的设计要求

二、5V/3.3V低压差电源变换器的设计方案

三、获取其他输出电压标称值的简便方法

四、多路输出式低压差线性稳压器的设计方案

第二节低压差线性稳压器在便携式电子产品中的应用

一、对便携式电子产品电源的设计要求

二、减小低压差线性稳压器互相干扰的方法

第三节低压差线性稳压器在精密数控基准电压源中的应用

一、MAX5130A的原理

二、精密数控基准电压源的电路设计

第十一章低压差线性稳压器的散热器设计

第一节散器的基本工作原理与安装方法

一、LD0的工作寿命与最高结温的关系

二、散热器的基本工作原理

三、塑料封装式LDO的散热器安装方法

第二节平板式散热器的设计

一、平板式散热器的设计方法

二、印制板式散热器的设计方法

第三节成品散热器的热参数与热参数计算

一、成品散热器的热参数

二、成品散热器的热参数计算

第四节大电流输出式LDO的散热器设计

一、大电流输出式LDO的散热曲线图

二、大电流输出式LDO的散热器设计示例

第五节在风冷条件下的散热器设计

一、在风冷条件下的散热器选择

二、散热器的特性曲线

三、利用功率分配电阻来减小散热器尺寸的方法

第六节不同封装的LDO散热器设计实例

第七节多片LDO并联使用散热器的设计实例

第八节设计散热器的常用工具软件

一、设计线性稳压器散热器的通用工具软件

二、设计低压差线性稳压器散热器的专用工具软件

参考文献

低压差线性稳压器的噪声排除

低压差线性稳压器的输出噪声受其内部设计和外部旁路、补偿电路的影响。图3是低压差线性稳压器的简单结构框图。由图可知,低压差线性稳压器输出噪声的主要来源是基准电路(voltage reference)模块,其产生的基准噪声在输出端被放大。此外,影响低压差线性稳压器输出噪声的其他因素还有:低压差线性稳压器内部放大器的极点、零点和输出极点,外部输出电容的容值和输出电容的等效串联电阻(esr)值,以及负载值。 图3 低压差线性稳压器简单结构 降低输出噪声的方法 ● bp 端加旁路电容 为降低基准噪声,需要在基准的输出端增加一路低通滤波器,滤波器可以集成在低压差线性稳压器内部或由外部电路实现。但内置滤波器占用了较大的管芯尺寸,增加了芯片的设计和生产成本。为此,有些低噪声低压差线性稳压器芯片只是提供一个基准的引脚bp(bypass),用于连接基准旁路电容。 连接基准旁路电容可降低基准噪声,使基准噪声成为产生低压差线性稳压器输出噪声的次要因素。建议使用典型值为 470pf~0.01μf的陶瓷电容,也可使用此围以外的电容,但会对输入电源上电时低压差线性稳压器 输出电压上升的速度产生影响。旁路电容值越大,输出电压上升速率越慢。在使用时要注意这点。 图4为旁路电容对sg2001输出噪声的影响。由图可见,随着旁路电容的增大,输出噪声也会有一定程度的减少。 图4 旁路电容对sg2001输出噪声的影响 ● 减小低压差线性稳压器的负载电流。 负载电流也会在一定程度上影响低压差线性稳压器的输出噪声。图5为负载电流对sgm2007输出噪声影响。由图可见,随着负载电流的增大,输出噪声也会有一定的增加。为了减小负载电流对低压差线性稳压器输出噪声的影响,要尽量选择输出电流大的低压差线性稳压器。 图5 负载电流对低压差线性稳压器噪声的影响 ● 增大低压差线性稳压器的输出电容 低压差线性稳压器需要连接外部输入和输出电容器。利用较低esr的大电容器一般可以全面提高电源抑制比(psrr)、噪声以及瞬态性能。陶瓷电容器通常是首选,因为其价格低且故障模式是断路模式。此外,输出电容器的等效串联电阻(esr)也会影响其稳定性。陶瓷电容器具有较低的esr,大概为10 mΩ量级。


备注:数据仅供参考,不作为投资依据。
免责声明:本站发布此文目的在于促进信息交流,不存在盈利性目的,此文观点与本站立场无关,不承担任何责任。本站欢迎各方(自)媒体、机构转载引用我们文章(文章注明原创的内容,未经本站允许不得转载),但要严格注明来源创大钢铁;部分内容文章及图片来自互联网或自媒体,我们尊重作者版权,版权归属于原作者,不保证该信息(包括但不限于文字、图片、视频、图表及数据)的准确性、真实性、完整性、有效性、及时性、原创性等。未经证实的信息仅供参考,不做任何投资和交易根据,据此操作风险自担。
相关现货行情
名称 最新价 涨跌
高线 3920 -
热轧平板 4620 -
低合金中板 4090 -
镀锌管 5390 -
槽钢 4080 -
热镀锌卷 5140 -
热轧卷板 11300 -
冷轧无取向硅钢 5000 -
圆钢 3840 -
硅铁 6600 100
低合金方坯 3580 -
铁精粉 890 -
二级焦 2360 -
铝锭 20550 -60
中废 2085 0